武汉大学曹余良-钠离子电池材料和体系新进展","children":[],"payload":{"tag":"li","lines":"12,13"}},{"content":" 1.西安交通大学韩晓刚-多孔石墨烯的快速制备及储能应用","children":[],"payload":{"tag":"li","lines":"13,14"}},{"content":" 2. 浙江大学陆盈盈-高能量密度金属锂电池及其负极保护机制","children":[],"payload":{"tag":"li","lines":"14,15"}},{"content":" 3. 四川大学林紫锋-二维MXene及其电化学储能","children":[],"payload":{"tag":"li","lines":"15,16"}},{"content":" 4. 中国科学技术大学余彦-M-Q Batteries (M=Li, Na, K)(Q=S, Se and SexSy)","children":[],"payload":{"tag":"li","lines":"16,17"}},{"content":" 5. 中国科学院成会明院士-大道至简,简以致用:二维材料的制备浅谈","children":[],"payload":{"tag":"li","lines":"17,18"}},{"content":" 6. 华中科技大学李芳芳-功能碳材料的制备及储能研究","children":[],"payload":{"tag":"li","lines":"18,19"}},{"content":" 7. 浙江大学刘英军-石墨烯材料导电性能提升策略","children":[],"payload":{"tag":"li","lines":"19,20"}},{"content":" 8. 伍伦贡大学郭再萍-Development of high performance potassium ion batteries","children":[],"payload":{"tag":"li","lines":"20,21"}},{"content":" 9. 俄勒冈州立大学纪秀磊-Considerations to storage batteries","children":[],"payload":{"tag":"li","lines":"21,22"}},{"content":" 10. 伍伦贡大学侴术雷-普鲁士蓝基的钠离子电池的研究与开发","children":[],"payload":{"tag":"li","lines":"22,23"}},{"content":" 11. 中国科学技术大学余彦-钠(钾)离子电池的正、负极材料设计与储能机理","children":[],"payload":{"tag":"li","lines":"23,24"}},{"content":" 12. 北京化工大学刘文-金属锂负极的结构设计和表面化学调控","children":[],"payload":{"tag":"li","lines":"24,25"}},{"content":" 13. 中国科学院韩布兴院士-绿色化学及绿色碳科学","children":[],"payload":{"tag":"li","lines":"25,26"}},{"content":" 14. 山东大学李国兴-基于锂金属负极的高能量密度电池的研究","children":[],"payload":{"tag":"li","lines":"26,27"}},{"content":" 15. 中国科学院吴凡-硫化物全固态电池技术及固态电解质材料","children":[],"payload":{"tag":"li","lines":"27,28"}},{"content":" 16. 扬州大学庞欢-配合物框架材料的能源化学研究","children":[],"payload":{"tag":"li","lines":"28,29"}},{"content":" 17. 爱思唯尔云端论坛:能源前沿论坛","children":[{"content":"(1)斯坦福大学崔屹教授-原位冷冻电镜助力能源前沿探索","children":[],"payload":{"tag":"li","lines":"30,31"}},{"content":"(2)东华大学朱美芳院士-碳基纤维在可穿戴能源储存器件中的应用","children":[],"payload":{"tag":"li","lines":"31,32"}},{"content":"(3)天津大学巩金龙教授-人工树叶:面向太阳能燃料的光电化学转化过程","children":[],"payload":{"tag":"li","lines":"32,33"}},{"content":"(4)复旦大学赵东元院士-功能介孔材料的界面组装","children":[],"payload":{"tag":"li","lines":"33,34"}},{"content":"(5)阿德莱德大学乔世璋教授-能源电催化","children":[],"payload":{"tag":"li","lines":"34,35"}},{"content":"(6)华中科技大学黄云辉教授-电池安全和安全电池","children":[],"payload":{"tag":"li","lines":"35,36"}}],"payload":{"tag":"li","lines":"29,36"}},{"content":" 18. 伍伦贡大学郭再萍-制造能量密度更高的锂离子电池","children":[],"payload":{"tag":"li","lines":"36,37"}},{"content":" 19. 格里菲斯大学张山青-Functional Binders for New Generation Energy Storage Devices","children":[],"payload":{"tag":"li","lines":"37,38"}},{"content":" 20. 西安交通大学宋江选-锂电粘结剂的结构设计","children":[],"payload":{"tag":"li","lines":"38,39"}},{"content":" 21. 南洋理工大学范红金-如何让你的稿子过编辑这一关","children":[],"payload":{"tag":"li","lines":"39,40"}},{"content":" 22. 中科院化学所郭玉国-金属锂固态电池研究进展","children":[],"payload":{"tag":"li","lines":"40,41"}},{"content":" 23. 华东理工大学刘洪来-超级电容器储能材料的设计与筛选","children":[],"payload":{"tag":"li","lines":"41,42"}},{"content":" 24. 武汉大学曹余良-钠离子电池关键材料及应用体系探讨","children":[],"payload":{"tag":"li","lines":"42,43"}},{"content":" 25. 天津大学许运华-锂-有机电池:有机电极的构筑与反应机理","children":[],"payload":{"tag":"li","lines":"43,44"}},{"content":" 26. 俄勒冈州立大学纪秀磊-展望水系电池:挑战与机遇","children":[],"payload":{"tag":"li","lines":"44,45"}},{"content":" 27. 清华大学张强-金属锂负极的能源化学新机制","children":[],"payload":{"tag":"li","lines":"45,46"}},{"content":" 28 中国科学技术大学余彦-钠(钾)离子电池负极材料研究","children":[],"payload":{"tag":"li","lines":"46,47"}},{"content":" 29. 南开大学周震-从材料模拟到人工智能的能源材料创新","children":[],"payload":{"tag":"li","lines":"47,48"}},{"content":" 30. 南开大学牛志强-水系锌离子电池材料与器件设计","children":[],"payload":{"tag":"li","lines":"48,49"}},{"content":" 31. 北京理工大学黄佳琦-锂硫电池固液界面调控策略","children":[],"payload":{"tag":"li","lines":"49,50"}},{"content":" 32. 武汉大学艾新平-动力电池安全性问题及改善技术","children":[],"payload":{"tag":"li","lines":"50,51"}},{"content":" 33. 中科院化学所郭玉国-硅基负极材料—从基础研究到产业应用","children":[],"payload":{"tag":"li","lines":"51,52"}},{"content":" 34. 北京大学夏定国-高容量富锂正极材料过去、现在及发展","children":[],"payload":{"tag":"li","lines":"52,53"}},{"content":" 35. 东莞瑞泰新材料科技有限公司李召平-碳基导电剂在锂电池中的应用","children":[],"payload":{"tag":"li","lines":"53,54"}},{"content":" 36. 北京化工大学邱介山-超级电容器电极材料的设计、结构与性能","children":[],"payload":{"tag":"li","lines":"54,55"}},{"content":" 37. 中科院物理所禹习谦-高能量密度锂电池关键电极材料研究","children":[],"payload":{"tag":"li","lines":"55,56"}},{"content":" 38. 武汉理工大学麦立强-纳米线储能材料与器件","children":[],"payload":{"tag":"li","lines":"56,57"}},{"content":" 39. 天津大学杨全红教授-高密组装和致密储能-石墨烯用于电化学储能的思考与实践","children":[],"payload":{"tag":"li","lines":"57,58"}},{"content":" 40. 南开大学周震教授-钠离子电池和混合电容器的研究进展","children":[],"payload":{"tag":"li","lines":"58,59"}},{"content":" 41. 安徽工业大学何孝军教授-超电用碳基电极材料的构筑和性能","children":[],"payload":{"tag":"li","lines":"59,60"}},{"content":" 42. 扬州大学王舜教授-高密度多孔碳的设计合成与储能应用","children":[],"payload":{"tag":"li","lines":"60,61"}},{"content":" 43. 中科院物理所陆雅翔副研究员-钠离子电池碳负极制备及其储钠机制研究","children":[],"payload":{"tag":"li","lines":"61,62"}}],"payload":{"tag":"li","lines":"11,62"}},{"content":"公众号","children":[{"content":" 锂离子电池技术全解析:新手入门必备指南","children":[],"payload":{"tag":"li","lines":"63,64"}},{"content":" 电池知识全知道:100 个必知问题答疑(二)","children":[],"payload":{"tag":"li","lines":"64,65"}},{"content":" 一文读懂,电池的能量密度解析!","children":[],"payload":{"tag":"li","lines":"65,66"}},{"content":" 电池历史:锂离子电池的发明(上)","children":[],"payload":{"tag":"li","lines":"66,67"}},{"content":" 电池历史:锂离子电池的发明(下)","children":[],"payload":{"tag":"li","lines":"67,68"}},{"content":" 【石墨烯】石墨烯、氧化石墨烯、还原氧化石墨烯,三者之间的区别,你弄明白了吗?","children":[],"payload":{"tag":"li","lines":"68,69"}},{"content":" 固态电池是什么?一文看懂!","children":[],"payload":{"tag":"li","lines":"69,70"}},{"content":" 电池知识全知道:100 个必知问题答疑(一)","children":[],"payload":{"tag":"li","lines":"70,72"}}],"payload":{"tag":"li","lines":"62,72"}}],"payload":{"tag":"h2","lines":"10,11"}},{"content":"MXene","children":[{"content":"MXene材料概述","children":[{"content":"MXene简介","children":[{"content":"MXene是一类新型的二维材料,由过渡金属碳化物、氮化物或碳氮化物组成。它们是通过选择性蚀刻MAX(Mn+1AXn-M代表过度金属元素。A主要是ⅢA~ⅣA族元素。X代表碳或者氮元素)相材料中的"A"层而制备得到的。MXene的名称来源于其制备过程(化学式:Mn+1XnTx T=-OH -O -F)。","children":[],"payload":{"tag":"li","lines":"75,76"}}],"payload":{"tag":"li","lines":"74,76"}},{"content":"MXene材料制备方法","children":[{"content":"MAX相刻蚀去除A原子","children":[{"content":"HF刻蚀法","children":[],"payload":{"tag":"li","lines":"78,79"}},{"content":"原位形成HF刻蚀法","children":[],"payload":{"tag":"li","lines":"79,80"}},{"content":"电化学刻蚀法","children":[],"payload":{"tag":"li","lines":"80,81"}},{"content":"碱刻蚀法","children":[],"payload":{"tag":"li","lines":"81,82"}}],"payload":{"tag":"li","lines":"77,82"}},{"content":"对多片层MXene进行插层剥离","children":[{"content":"减弱层间范德瓦耳斯力","children":[],"payload":{"tag":"li","lines":"83,84"}}],"payload":{"tag":"li","lines":"82,84"}}],"payload":{"tag":"li","lines":"76,84"}},{"content":"MXene材料性质","children":[{"content":"导电性","children":[],"payload":{"tag":"li","lines":"85,86"}},{"content":"磁学性质","children":[],"payload":{"tag":"li","lines":"86,87"}},{"content":"分散性","children":[],"payload":{"tag":"li","lines":"87,88"}},{"content":"稳定性","children":[],"payload":{"tag":"li","lines":"88,89"}},{"content":"光学性能","children":[],"payload":{"tag":"li","lines":"89,90"}}],"payload":{"tag":"li","lines":"84,90"}},{"content":"MXene材料的应用","children":[{"content":"储能","children":[],"payload":{"tag":"li","lines":"91,92"}},{"content":"催化","children":[],"payload":{"tag":"li","lines":"92,93"}},{"content":"传感","children":[],"payload":{"tag":"li","lines":"93,94"}},{"content":"电磁屏蔽","children":[],"payload":{"tag":"li","lines":"94,95"}},{"content":"吸附","children":[],"payload":{"tag":"li","lines":"95,96"}},{"content":"储氢","children":[],"payload":{"tag":"li","lines":"96,97"}},{"content":"生物医疗","children":[],"payload":{"tag":"li","lines":"97,98"}}],"payload":{"tag":"li","lines":"90,98"}}],"payload":{"tag":"li","lines":"73,98"}},{"content":"MXene材料的制备","children":[{"content":"含氟刻蚀法","children":[{"content":"HF刻蚀法","children":[{"content":"基于氟离子与铝的高反应活性,使得HF能够打破MAX相中较弱的M-A键,选择性的刻蚀掉A层原子,而M-X不受影响,得到多片层堆叠的MXene","children":[],"payload":{"tag":"li","lines":"101,102"}},{"content":"几乎所有的Al基MAX相均可用于HF刻蚀合成MXene","children":[],"payload":{"tag":"li","lines":"102,103"}},{"content":"产率影响因素","children":[{"content":"HF的浓度,刻蚀温度,刻蚀时间","children":[],"payload":{"tag":"li","lines":"104,105"}}],"payload":{"tag":"li","lines":"103,105"}}],"payload":{"tag":"li","lines":"100,105"}},{"content":"原位形成HF刻蚀法","children":[{"content":"防止HF刻蚀剂的腐蚀性强,操作不便","children":[],"payload":{"tag":"li","lines":"106,107"}},{"content":"1 酸/氟酸盐刻蚀法(HCL/LiF[NaF/KF/FeF3])","children":[{"content":"HCL/LiF最常用,通过此刻蚀剂得到的手风琴状MXene可直接通过温和的超声和手摇得到单层的MXene","children":[],"payload":{"tag":"li","lines":"108,109"}},{"content":"LiF的浓度对MXene的物理性质有很大影响","children":[],"payload":{"tag":"li","lines":"109,110"}},{"content":"刻蚀范围局限于含Al的MAX和部分非MAX相","children":[],"payload":{"tag":"li","lines":"110,111"}}],"payload":{"tag":"li","lines":"107,111"}},{"content":"2 双氟盐刻蚀法(NH4HF2)","children":[{"content":"得到的产物不能直接获得单片层,要加入插层剂","children":[],"payload":{"tag":"li","lines":"112,113"}}],"payload":{"tag":"li","lines":"111,113"}}],"payload":{"tag":"li","lines":"105,113"}},{"content":"含氟熔融盐刻蚀法","children":[],"payload":{"tag":"li","lines":"113,114"}}],"payload":{"tag":"li","lines":"99,114"}},{"content":"无氟刻蚀法","children":[{"content":"电化学刻蚀","children":[{"content":"以前驱体max相为工作电极,在特定电压下进行电化学反应","children":[],"payload":{"tag":"li","lines":"116,117"}},{"content":"刻蚀电位,刻蚀时间,电解液(电解液含有氯离子是刻蚀的必备条件)","children":[],"payload":{"tag":"li","lines":"117,118"}},{"content":"刻蚀时间加长,会使得MXene层变成CDC。因此产生MAX相内核,MXene中间层,CDC外层。产率降低。因此需要加入插层剂,扩大层间距","children":[],"payload":{"tag":"li","lines":"118,119"}}],"payload":{"tag":"li","lines":"115,119"}},{"content":"碱刻蚀法","children":[{"content":"必要条件:高温,高浓度碱","children":[],"payload":{"tag":"li","lines":"120,121"}},{"content":"Ti3Al2C2 与27.5mol/LNaoH 270℃","children":[],"payload":{"tag":"li","lines":"121,122"}}],"payload":{"tag":"li","lines":"119,122"}},{"content":"路易斯酸熔融盐刻蚀法","children":[],"payload":{"tag":"li","lines":"122,123"}}],"payload":{"tag":"li","lines":"114,123"}}],"payload":{"tag":"li","lines":"98,123"}},{"content":"MXene材料的结构与性质","children":[],"payload":{"tag":"li","lines":"123,124"}},{"content":"MXene在超级电容中的应用","children":[],"payload":{"tag":"li","lines":"124,125"}},{"content":"MXene在碱金属离子电池中的应用","children":[],"payload":{"tag":"li","lines":"125,126"}},{"content":"MXene在锂硫电池中的应用","children":[],"payload":{"tag":"li","lines":"126,127"}},{"content":"MXene在水系锌离子电池中的应用","children":[],"payload":{"tag":"li","lines":"127,128"}},{"content":"MXene多功能导电粘结剂在电极成型中的应用","children":[],"payload":{"tag":"li","lines":"128,129"}}],"payload":{"tag":"h2","lines":"72,73"}}],"payload":{"tag":"h1","lines":"8,9"}}